周正阳

时间:2023-12-12

个人简介:周正阳,男,软件学院特任副研究员,硕士研究生导师,20236月于中国科学技术大学计算机科学与技术学院获博士学位。主要研究领域是时空数据挖掘、城市计算与城市科学,致力于提升深度时空学习模型精准性、可靠性和泛化性,赋能交通预测、城市安全、污染治理等城市科学领域,推动城市治理数字化与城市发展优化决策。近五年来,周正阳博士共发表城市计算领域高水平学术论文30余篇,其中以第一作者/通讯作者身份在CCF-B类以上会议/期刊发表论文10余篇,其担任CVPRAAAIICCVICMLKDD等在内的CCF-A类会议十余次,谷歌学术引用近300次,H-index=8。曾获ACM SIGSPATIAL中国分会优博(提名)、中国科学院院长奖、中国科大校优博论文(提名)、国家奖学金、之江国际青年人才基金等荣誉及奖励。

电子邮箱:zzy0929@ustc.edu.cn

联系地址:江苏省苏州市工业园区若水路99号至德楼A1302-2

个人主页:http://home.ustc.edu.cn/~zzy0929/Home/

研究方向:时空数据挖掘与城市计算、面向时空计算的深度学习模型泛化与迁移、时空图表征学习

部分学术论文及著作(*通信作者)

  1. Qihe Huang, Lei Shen, Ruixin Zhang, Jiahuan Cheng, Shouhong Ding,Zhengyang Zhou*, Yang Wang*. HDMixer: Hierarchical Dependency with Extendable Patch for Multivariate Time Series Forecasting, the 38th AAAI Conference on Artificial Intelligence (AAAI), 2024. (CCF-A)

  2. Binwu Wang, Pengkun Wang,Yudong Zhang, Xu Wang, Zhengyang Zhou, Lei Bai, Yang Wang. Towards Streaming Spatial-Temporal Graph Learning: A Decoupled Perspective. the 38th AAAI Conference on Artificial Intelligence (AAAI), 2024. (CCF-A)

  3. Zhengyang Zhou, Jiahao Shi, Hongbo Zhang, Qiongyu Chen, Xu Wang*, Hongyang Chen, Yang Wang, the 17th ACM International Conference Web Search and Data Mining (WSDM), 2024. (CCF-B)

  4. Zhengyang Zhou, Kuo Yang, Yuxuan Liang, Binwu Wang, Hongyang Chen, Yang Wang*. Predicting collective human mobility via countering spatiotemporal heterogeneity. IEEE Transactions on Mobile Computing, IEEE TMC (CCF-A, IF= 7.9), Accepted.

  5. Kuo Yang, Zhengyang Zhou*, Wei Sun, Pengkun Wang, Xu Wang, Yang Wang*. EXTRACT and REFINE: Finding a Support Subgraph Set for Graph Representation. The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2023. (CCF-A)

  6. Zhengyang Zhou, Qihe Huang, Kuo Yang, Kun Wang, Xu Wang, Yudong Zhang, Yuxuan Liang, Yang Wang. Maintaining the status quo: Capturing invariant relations for OOD spatiotemporal learning. The 29th ACM SIGKDD Conference on Knowledge Discovery and Data mining (KDD). Long Beach, USA, 2023.(CCF-A)

  7. Binwu Wang, Yudong Zhang, Xu Wang, Pengkun Wang, Zhengyang Zhou, Lei Bai, Yang Wang. Pattern Expansion and Consolidation on Evolving Graphs for Continual Spatiotemporal Graph Learning. The 29th ACM SIGKDD Conference on Knowledge Discovery and Data mining (KDD). Long Beach, USA, 2023.(CCF-A)

  8. Zhengyang Zhou, Qihe Huang, Gengyu Lin, Kuo Yang, Lei Bai, Yang Wang*, GReTo: Remedying dynamic graph topology-task discordance via target homophily. The International Conference on Learning Representations (ICLR), 2023. (机器学习领域顶级会议)

  9. Zhengyang Zhou, Kuo Yang, Wei Sun, Binwu Wang, Min Zhou, Yunan Zong, Yang Wang*, Towards Learning in Grey Spatiotemporal Systems: A Prophet to Non-consecutive Spatiotemporal Dynamics. SIAM International Conference on Data Mining (SDM), 2023. (CCF-B)

  10. 周正阳,刘浩,王琨,王鹏焜,王旭,汪炀*, 基于教师-学生时空半监督网络的城市事件预测方法, 电子学报, 2023, Accepted. (CCF推荐A类中文期刊)

  11. Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou*, Yang Wang*. CrossGNN: Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement. The 37th Conference on Neural Information Processing Systems, (NeurIPS), 2023.

  12. Zhengyang Zhou. Attention Based Stack ResNet for Citywide Traffic Accident Prediction. 2019 20th IEEE International Conference on Mobile Data Management (MDM). IEEE, 2019: 369-370. (PhD Forum)

  13. Zhengyang Zhou, Lianliang Chen, Chaochao Zhu, and Pengkun Wang. Stack ResNet For Short-term Accident Risk Prediction Leveraging Cross-domain Data. 2019 Chinese Automation Congress (CAC), Hangzhou, China, 2019. 782-787.

  14. Yudong Zhang, Binwu Wang, Ziyang Shan, Zhengyang Zhou*, Yang Wang*, CMT-Net: A Mutual Transition Aware Framework for Taxicab Pick-ups and Drop-offs Co-Prediction, ACM International Conference on Web Search and Data Mining (WSDM), 2022. (CCF-B)

  15. Kun Wang, Zhengyang Zhou, Xu Wang, Pengkun Wang, Qi Fang, Yang Wang*, A2DJP: A Two Graph-based Component Fused Learning Framework for Urban Anomaly Distribution and Duration Joint-Prediction, IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022. (CCF-A)

  16. Pengkun Wang, Chaochao Zhu, Xu Wang, Zhengyang Zhou, Guang Wang, Yang Wang*, Inferring Intersection Traffic Patterns with Sparse Video Surveillance Information: An ST-GAN method., IEEE Transactions on Vehicular Technology (TVT), 2022. (JCR一区)

  17. Xu Wang, Lianliang Chen, Hongbo Zhang, Pengkun Wang, Zhengyang Zhou, Yang Wang*, A Multi-graph Fusion Based Spatiotemporal Dynamic Learning Framework. ACM International Conference on Web Search and Data Mining (WSDM), 2023. (CCF-B)

  18. Wenjie Du, Lianliang Chen, Haoran Wang, Ziyang Shan, Zhengyang Zhou, Wenwei Li, Yang Wang*, Deciphering Urban Traffic Impacts on Air Quality by Deep Learning and Emission Inventor, Journal of Environmental Sciences (JESC), 2022. (JCR一区, ESI高被引)

  19. Zhengyang Zhou, Yang Wang*, Xike Xie, Lei Qiao, Yuantao Li, STUaNet: Understanding Uncertainty in Spatiotemporal Collective Human Mobility, 30th The Web Conference (WWW), 2021. (CCF-A)

  20. Zhengyang Zhou, Yang Wang*, Xike Xie, Lianliang Chen, Chaochao Zhu, Foresee Urban Sparse Traffic Accidents: A Spatiotemporal Multi-Granularity Perspective, IEEE Transactions on Knowledge and Data Engineering (TKDE), 2021. (CCF-A, IF = 9.235)

  21. Zhengyang Zhou, Yang Wang*, Xike Xie, Lianliang Chen, Hengchang Liu, RiskOracle: A Minute-level CityWide Traffic Accident Forecasting Framework, the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), 2020. (CCF-A)

  22. Pengkun Wang, Chuancai Ge, Zhengyang Zhou, Xu Wang, Yuantao Li, Yang Wang*, Joint Gated Co-attention Based Multi-modal Networks for Subregion House Price Prediction, IEEE Transactions on Knowledge and Data Engineering (TKDE), 2021. (CCF-A)

  23. Yang Wang,Zhengyang Zhou, Kai Liu, Xike Xie, Wenhua Li, Large-Scale Intelligent Taxicab Scheduling: A Distributed and Future-Aware Approach, IEEE Transactions on Vehicular Technology, (TVT), 2020. (JCR一区,IF = 6.239)

  24. Kangjia Shao, Yang Wang*, Zhengyang Zhou, Xike Xie, Guang Wang, TrajForesee: How limited detailed trajectories enhance large-scale sparse information to predict vehicle trajectories?, IEEE 37th International Conference on Data Engineering (ICDE), 2021. (CCF-A)